Horsepower and torque calculation for tapping

for M, MF, UNC, UNF, UNEF, UN, GRp, NPSM, BSW, MJ

Torque

$$M_D = \frac{k_c \cdot h^2 \cdot d_1}{8000}$$

Nm

k_c. . . Spec. cutting force (N/mm^2) (table)

h... Pitch (mm)

d₁... Nominal thread dia.

(mm)

Tapping power

$$P = \frac{M_D \cdot n}{9500}$$

kW

n... Spindle speed (r.p.m.)

Machine required power

$$P_{M} = P_{\overline{N_{M}}}$$

kW

 P_{M} . . . Required driving power of the machine

 N_M . . . Machine efficiency $N_M < 1$

Material	k _c -value (n/mm²)
Steel 1000-1300 N/mm ²	3600
Steel 800-1000 N/mm ²	2600
Steel 600-850 N/mm ²	2500
Steel < 600 N/mm ²	2300
Stainless Steel	3200
Cast bronze	1900
Grey cast iron (HB 170)	1600
White malleable iron	1250
Copper	1100
White malleable iron	900
Brass	720
Al-Si alloy	680
Zinc alloy	440

Calculation example

Thread M36, pitch 4mm,

Material being machined: steel 900 N/mm²

Spindle speed: 50 r.p.m.

Efficiency of machine $N_m = 0.6$

$$M_D = \frac{k_c \cdot h^2 \cdot d_1}{8000} = \frac{2600 \cdot 4^2 \cdot 36}{8000} = 187 \text{ N}_m$$

$$P = \frac{M_D \cdot n}{9500} = \frac{187 \cdot 10}{9500} = 0.98 \text{ kW}$$

Machine required power

$$P_{M} = \frac{P}{N_{M}} = \frac{0.98}{0.6} = 1.6 \text{ kW}$$

These calculations are valid for new taps. When using blunt tools the torque can increase up to three times; i.e., horsepower increases by the same factor.

Horsepower and torque calculation for tapping

1.1 Torque calculation

$$Md = k_{c1.1} \cdot h_m^{(l \cdot mc)} \cdot \frac{D \cdot P \cdot Z \cdot Za}{40} \cdot Td^{kt} \cdot Ta \cdot Af$$

 $Md = Torque in N_{cm}$

 k_{c11} = Specific cutting force (material constant N/mm2)

hm = $P/(2 \cdot Z \cdot Za)$ in mm

mc = Exponent of chip thickness (material constant)

D = Nominal thread diameter (mm)

P = Pitch (mm)

Z = Number of flutes

Za = Number of start threads T = Depth of thread (mm)

Td = Factor Depth of thread - Diameter

Ta = Factor Depth of thread - Length of thread

kt = Factor

1. Definition of the factors Td and Ta

If the length of lead (= number of start threads • pitch) > depth of thread

Td = Length of thread / nominal diameter

Ta = Depth of thread / length of thread

In order cases:

Td = Depth of thread / nominal diameters

Ta = 1

2. Definition of the factor k_t

 $k_t = 0.55$ for taps for blind holes

 $k_t = 0.25$ for taps for through holes

 $k_t = 0.15$ for internal thread formers